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Abstract. In this paper we consider the issue of endowing@h system with
decision-making capabilities for operation in realrld environments or those
of comparable complexity. While action-selectioraigritical function of any
AGI system operating in the real-world, very fewphbgable theories or meth-
odologies exist to support such functionality, wredhnecessary factors are
taken into account. Decision theory and standaadchetechniques require sev-
eral debilitating simplifications, including detenism, discrete state spaces,
exhaustive evaluation of all possible future actiamd a coarse grained repre-
sentation of time. Due to the stochastic and caotis nature of real-world en-
vironments and inherent time-constraints, diregiaption of decision-making
methodologies from traditional decision theory a@rch is not a viable op-
tion. We presenpredictive heuristics as a way to bridge the gap between the
simplifications of decision theory and search, #m complexity of real-world
environments.

Keywords: artificial intelligence, heuristics, action-select, resource man-
agement

1 Introduction

While real-world environments are the ultimate &rdomains of most AGI archi-
tectures, few solutions exist in the literature fational decision-making under the
constraints imposed by such environments. Most oastirom decision theory rely
on assumptions that preclude their applicationhis tontext; namely deterministic
environments, discrete state spaces, coarse-gregpeglsentations of time and unlim-
ited resources. For example, Russell (1989) presantesource-bounded decision
theoretic framework which accounts for the costlefision-making, but fails to ad-
dress the stochastic nature of the environment.

For an overview of how many present AGI architeesufail to address operating
features common to all real-world environments, Feérisson (2012a), such as un-
certainty and incomplete knowledge.
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In this paper, we propogeedictive heuristics as a viable solution to the decision-
making problem in the context of AGI and real-woedvironments. As opposed to
exhaustive evaluation of all possible future staitssfunctionality is based on relax-
ing some of the constraints inherent in traditiosa@hrch and employing rationally-
directed, selective evaluation of possible and abtdfuture states.

2 Traditional heuristic search

In traditional search (as presented in any entvgllél textbook), action-selection
in a particular state begins by enumerating aneiggimg all possible next states - or
nodes, on the next level of the search tree — iatwehcalled the expansion phase. All
of these possible future states are then evaluedieg a utility function and the action
leading to the state with the highest utility valsechosen as the next action. Some
applications of search focus on terminal states@gmahot require a utility function.
These include game-playing, where terminal statesstates that end the current
game either in a draw, in favor of the system a$ager or in favor of the opponent.
However, a terminal state is not a very intuitiancept to guide decisions of AGI
systems operating in an open-ended fashion inwedll environments.

The expansion and evaluation phases are frequesigated more than one step
into the future in order to evaluate what lies b@ya particular single action. Time is
represented in a coarse-grained manner where egtdiah step and following possi-
ble states are both atomic units of time; concélytadl possible next states are thus
assumed to occur at a fixed step length in timdeathieir actual time of occurrence is
unspecified.

Heuristics may be defined as being “strategies gusaadily accessible, though
loosely applicable, information to control problesmlving in human beings and ma-
chines” (Pearl, 1983, p. 7) and are usually dond@ipendent in some way, for exam-
ple representing “rules-of-thumb” from the partenulproblem domain. They have
commonly been used in search problems to incrdeseefficiency of search algo-
rithms as approximation methods to identify futstates that are likely to be more
rewarding than others. As the concept of heuridtas a loose definition, implemen-
tations vary. Heuristics are part of the utilitynétion for future states in A* search
(Hart 1968). A more general type of heuristics, drypeuristics, has been proposed
(Burke 2003). Hyper-heuristics are domain-indepahde nature, described as meth-
ods for selecting lower-level heuristics at rundifrom a predefined set of low-level
heuristics as appropriate to the present step efptbblem solving process (Ozcan
2008). Hyper-heuristics may be understood as aaddtr optimizing the application
of manually-generated domain-dependent heuristigsiratime. Realtime operation
in search and heuristics has been addressed tgraeganost notably by theal-
Time A* algorithm proposed by Korf (1990).
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Fig. 1. State-spaces in typical search problems and tpkcapon of heuristics. a) The state-
space is represented in atomic temporal stepsanithe structure where each level of the tree
corresponds to an atomic moment of time. The inst@e SO occurs at time TO. b) All possible
states in the next moment of time (T1) after SOaremerated resulting in the generation of
possible future states Sto S . ¢) All states generated in the previous stepeseduated using

a heuristic utility function. The resulting utilityalue for each state is noted in the figure. d)
Comparison of utility values finds the state withxmaum utility value. This results in either
the selection of an action producing that statarorexpansion of that state where following
states are evaluated. In the latter case, hewristiotrol how the search tree is expanded.

3 Challenges of real-world environments

Determinism, discrete state-spaces and coarseegra@mporal representations all
present significant problems for AGIs intended pemte in the real-world in envi-
ronments of real-world complexity. In such enviramnts, determinism is a problem
since what has reliably worked in the past is na@trgnteed to work in the future; the
environment may change or some external entity maxpectedly influence how
events unfold. Discrete state-spaces are a proatethe state of real-world environ-



ments must be represented largely by continuougesakliminating the possibility of
enumerating all possible future states, let aldweerésource requirements for evaluat-
ing all of them. While fine-grained discretizatioan approximate continuous values,
each approximated value may still take anywherenfe¥ to 2* different values. In
operating situations involving multiple approximétealues, the state-space quickly
grows out of control from the resulting combinaabexplosionif all possible future
states must be considered. A more coarsely grained approximation can rediee
state-space, but is also likely to negatively inigaerformance at some point. Coarse-
grained representations of time are a problem asg#s in real-world environments
do not occur simultaneously at relatively wide,efix synchronized intervals. For
these reasons, exhaustive evaluation of all pessiblire actions — and thus optimali-
ty in decision-making that guarantees the bestoonéc— is impossible in real-world
environments in resource-bounded AGI systems.

Changing the assumption of environmental determiriisto a probabilistic envi-
ronment leaves the nature of the issue unchangedexample, in a Markov decision
process (MDP) the next state after an action idoam with a probabilistic distribu-
tion. While closer to the real-world environment tgpturing the uncertainty about
the consequences of actions, a stationary probaditiistribution for the states fol-
lowing an action are nevertheless unavoidable, @msequently truly novel situa-
tions and unanticipated situations are precludedthErmore, probabilistic models
usually have even higher resource demands thamaatstic models, given the large
number of possible consequences of each action.

This implies that if we want to properly addresss tissue, the only feasible ap-
proach left is theselective evaluation of all possible future states. However, accepting
this challenge gives us another problem; that gipivay out selectetuture points of
interest: We must invent a process @ ective generation of possible future states of
value to the AGI system.

4  Adapting search to real-world environments

The traditional setting for search can be alteceddcommodate decision-making in
real-world environments. First, a fine-grained es@ntation of time must be accom-
modated in the decision-making process. The distindetween fine- and coarse-
grained representations should be viewed relatvin¢ frequency of changes in the
operating environment where finer grained repregants encode the actual sequence
of events with greater accuracy. This distinctiosymlso be viewed as the difference
between an order-based versus a measure-basedemtateon, the latter being de-
sired here. While this only applies to events ratévto the operation of the system,
these events are unknown at design time due tald¢ineain-independent nature of
AGI systems; consequently, the finest possibleractical granularity should be tar-
geted. This is possible if the requirement of cdesing only simultaneous possible
actions (at the next coarse-grained time step)nmplg dropped. The focus of the
decision-making process is still one step of actido the future. However the size of
such a step is allowed to vary in length alongfthare part of the temporal dimen-



sion for each possible action. This length is deteed by the timing of selected
states that end up being evaluated. The resutaismeaning is given to the length of
the links in Figure 1, representing when in time gossible future states occur. As
already discussed the enumeration of all possililerd states — even at a fixed point
in time — is intractable in real-world environmerftsr this reason, the requirement of
generating all possible future states must be drdpp favor of selectively generating
only a small subset of these. This addresses thmenation problem. Finally, the
stochastic nature of the environment must be acledged by estimating the likeli-
hood of generated future states as opposed togtakieir occurrence for granted,
given some action leading up to them. The evalnadiblikelihood does not have to
assume a stationary probability distribution. Ewen the likelihood of a future state
should influence its evaluation; it seems reasanabldiscount the value of a highly
favorable future state (in terms of the utility étion of the AGI system) if its actual
occurrence is not likely. Conversely, it is ratibt@ amplify the value of a possible
future state of average value (relative to othessfe future states) if its actual oc-
currence is virtually guaranteed. This addressesighue of deterministic environ-
ments.

Conceptually, the search tree structure is stlibvar representing the decision prob-
lem, but evenly distributed levels of the tree dissar as the length of links between
nodes now represents the duration of time elapsatgeen states. This implies that
the depth of a node becomes its distance in th@deah dimension from the root
node, as opposed to the number of intermediaterecti

5 Predictive heuristics

While AGI systems require some type of heuristike-functionality in order to
detect future states of potential interest, theseot be directly unleashed on an ex-
isting set of possible future states as that in&diom is not available. One possible
solution is to generate “imaginary” future situatiothat are likely to occur in the
future, where each situation is not fully specified a “state” in the traditional sense).
The application of search to such partial statdschvonly deal with changes in the
operating environment that have goal-relevanceleank other changes unaddressed,
coupled with the modified search methodology presskrin the previous section,
which allows simultaneous evaluation of actionaraitrary distances into the future,
and the formulas presented below, that incorporateertainty, incomplete
knowledge and temporal context represent the dotleeddea presented in this paper.

Such predictions could be made based on the prependting situation, the opera-
tional experience of the system and some suggestiéons on part of the system
(which should include inaction). By continuouslyngeating future predictions that
collectively represent a set of events that haveenmobability of occurring than
others, the AGI system can attempt to stay sonps sthead of the environment and
thus increase its chances of being prepared, bggrguting — mentally preparing —
some aspects of the potential actions that mighiese its active goals at those future
steps. It seems rational to direct the resourcéiseo$ystem towards events that have a



greater probability of occurring rather than towsatde much greater (infinite?) num-
ber of improbable ones. An implication of this apgech is that the system will be
unable to anticipate, prepare for or actively aveignts that cannot be rationally
predicted in some way by its operational experieftg no known intelligence has
this ability either.

Having adapted the search problem to real-worldrenments, some challenges
remain. One of the key ones is the issue of howsiptesfuture states are selectively
generated and the estimation of their likelihookka@ly, possible future states consti-
tute states that are likely to occur in case ahagtion and b) selected actions on part
of the AGI system. Predictions made on the basipasible future actions of the
AGI system can be viewed as a formgogl-directed simulation, not to be confused
with simulation-based search methods suchMaste-Carlo Tree Search (Chaslot
2008). A complete enumeration of all possible ation part of the system is intrac-
table for the same reason as exhaustive enumerattialt possible future states is;
most actions can be assumed to include parametdrscantinuous values making
the set of all possible actions potentially innitFor this reason, the system must
suggest a set of goal-relevant actions. While timetionality required for this is out-
side the scope of this paper, our experience itelicthat attentional functionality is
of key importance for this purpose (Helgason et2@ll?). In general, any slight or
major improvement in predicting relevancy will irese the value of the work pro-
posed here.

If we denote the set of suggested action®amnd a set containing inaction is de-
noted ad, the complete set of actions for consideratiothésunion of¥ andl, de-
noted a®2. Given the sef, the selective generation of possible future stafénter-
est can be approached as a prediction problem whereypothetical states resulting
from each action contained & are predicted. The set containing these possible f
ture states is denote®. In this case, the decision-making problem boitsvid to
computing an expected value (where the likelihobthe occurrence of the state is
given consideration) for each possible future siat® and finding the state with
maximum value. A set of predictors, denoldis used to genera® where each
predictor ;) is a process that takes a subset of the pretsptaf the environment
and the system itself in addition to a single actimm Q as inputs and outputs a
prediction of a new state occurring at an explogtnt in time (in the future). Each
predictor uses (or is built from) the operationastdry of the AGI system, which is a
necessary basis of all predictions. Furthermore pgrformpance of each predictor is
measured over time with two parametetgcess rate andconfidence. These parame-
ters and the way in which they are calculated asetd on Wang's (2006: 59-62)
method for evaluating truth of logical statemem$NARS, which is motivated in the
cited text.

No further selection is necessary after the®séias been selectively populated; the
very fact that a state was generated (predictetiyates that it is worthy of the re-
sources necessary for evaluation. Not only doesalow the AGI system to choose
rational actions likely to advance its goals, itynadso allow the system to detect that
undesirable events are likely to occur in the rfature, which the system can then
generate explicit goals to avoid.
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Fig. 2. Predictive heuristics. a) The initial state b8curs at a specific point on a continuous
(or fine-grained) axis of time. b) Based on theesgtind the set of suggested actiof}, @
finite set of possible future states (each den8tgds generated that may be distributed on the
future part of the temporal axis. ¢) Each S’ sistevaluated and Sfound most desirable (hav-
ing the highest expected value), causing the seteof the action leading to that state or the
examination of states following Sihere the steps depicted here are repeated witts $e

initial state.
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Success rate(p;) = m where:

; :

5p;, isthe set of prior successful predictions made by p;
ISpi | Sp; is the set of all prior predictions made by p;
Confidence(p;) = W
i

The success rate is the ratio of successful piedi&that the predictor has made in
the past. The confidence represents the reliakofitthe success rate value based on
the amount of evidence supporting it. Using thes® talues, dikelihood value can
be computed that indicates the likelihood of aipaldr future state occurring. This
value should be interpreted as relative to thelihbed of other future states under
consideration as opposed to a strict probabilistierpretation. The likelihood of a

predictionS’ made by predictop; is computed using Wang's (2006: 75-76) formula
for expectation as:



Likelihood(S") = Confidence(p;) * (Success rate(p;) — 0.5) + 0.5

Unlike in probability theory, this likelihood measment is not based on a station-
ary distribution function, since we do not assuime prediction results are random
numbers governed by a fixed distribution. The folanabove incorporates two criti-
cal issues for decision theory: Uncertainty ancbmplete knowledge. It addresses
non-determinism in the operating environment withasing probability distributions
for action outcomes, which has inherent limitations

As the system is expected to be goal-driven, threuetion function for future
states should be based on goal-achievement. Eadhofjthe system is assumed to
have an associated priority and deadline valuesjefier in the absence of these,
default initial values may be used. Time is repnése: as a single numeric value. The
Achieved function evaluates to 1.0 if goglis achieved in the specified state and -1.0
otherwise. Each state occurs at a specific timehich is encoded in the state itself.
The Utility function evaluates the value of achieving a gaadrythe priority of the
goal and temporal context of a specified state. thersake of clear notation, two
helper functions are used and a specialldeis introduced which contains dime
horizons (quantified intervals of time) between the timeadlf states currently under
consideration and the deadline of the goal spawthiegstate. Th&rgency function
returns O if either value is equal or less than 0.

Horizon(g,S') = Deadline(g) — TimeOf(S")

Horizon(g,S")
MAX (H)

Urgency(g,S") =

Utility(g,S") = Priority(g) * Urgency(g,S")

With key functions in place, we can compute theeexgd value of a future sta®é
using the formula below whema is the total number of states that must be consid-
ered, as the occurrence of S’ may be dependenineh) (ntermediate states occur-
ring, forming a sequential chain of predictionstehaving their own likelihood val-
ue. If S’ is not dependent on intermediate statesym is 1.

Expected value(S',,) =
m n
n Likelihood(S'}) * Z Achieved(g;,S") * Utility(g;,5"m)
J=0 i=0

In systems based on fine-grained architecturesl¢éitempaosition of a top-level in-
to several sub-goals may be expected. Increassmgumber of active goals involved
with regular operation of the system results irfigranularity of the evaluation pro-



cess. For this reason, this evaluation method regyaticularly useful for AGI archi-
tectures designed under a constructivist methoga[dgorisson 2012).

Resource availability can be expected to affecttinmber of predictions made by
the AGI system at each point in time. Predictivactionality has strong links to
learning, as learning can result from discoveriolyitions by way of generating pre-
dictions with desirable outcomes in terms of actijeals. This indicates that during
periods where the system lacks knowledge and &gtdeks to learn, a greater share
of resources should be devoted to the generatidnemaluation of predictions than
under normal circumstances; this causes the sygieemplore a greater number of
future states. This represents a resource-bouimtediuptible and directed fashion of
discovery and learning as part of the decision-m@kirocess.

To encapsulate these ideas, we propose the coocppdictive heuristics for the
functionality just described; this concept représean extended scope and altered
functionality in contrast to traditional heuristicBo explicitly motivate this naming:
Predictive refers to reliance on predictors to guide actielection and generation of
resulting states as this has traditionally not béewed as part of heuristic functional-
ity since a separate expansion phase has beenothe Compared to traditional
methods, in our approach the heuristics for selectate generation are integrated at
deeper levels of the search mechanism.

6 Discussion

Predictive heuristics represent one possible wayetate work in state-space
search and decision theory to the AGI problem. Ahiaimum, the proposed ideas
highlight problems faced by traditional search rodthin real-world environments
and provide a potential bridge from which techn&dieom traditional search and
decision theory could possibly be brought to bearAGI-level problems, although
most probably in some slightly altered form.

With prediction-based generation of future staties,evaluation of possible future
events is restricted to states that have a noorastrical probability of occurring.
Rather than working backwards from all possibleifetstates - the number of which
approaches infinity in real-world environments -sééems greatly more feasible to
work forward from the current state to the states aire likely to follow while using
the goals to guide the process (so a form of baakivderence is absorbed into it);
the resulting decrease in complexity of the deaigiooblem can hardly be overstated
as the number of states to be considered can dree\eral orders of magnitude (or
even from infinity to finite number). Furthermoiiejs no longer a fixed number, but
is adapted to the system’s available resources.nWhne system is idle, it can afford
the time to consider some unusual possibilitiesenvh is busy, it will focus on the
most promising paths.

A variation of the functionality presented in theegent paper has been successful-
ly implemented in the AERA architecture (Nivel dt 2012a & 2012b, Thérisson
2012b) with further publications to follow.
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